بررسی تنوع زننیکی جمعیت‌های مرم گلی دارویی با استفاده از الکتروفورز پروتئین‌های ذخیره‌ای بذر

سیدعباس میرجلیلی

مؤسسه آزموز علمی کاربردی جهاد کشاورزی، سازمان تحقیقات، آزموز و ترویج کشاورزی، تهران، ایران

چکیده
سروه سلیو از تیره تیلیان، یکی از ۹۰۰ گونه را شامل می‌شود که پراکندگی نسبتاً وسیعی در طول گیاهان ایران دارد. تاکنون، حدود ۶۵ گونه از این سرده در کشور شناسایی و گزارش شده که بین ۱۷ گونه از این احصائی است. به منظور بررسی شناسایی و مقایسه جمعیت‌های مختلف گونه مرم گلی دارویی، تیکه‌دهی گونه‌های و شباهت‌های و اندازه‌گیری جمعیت‌های روی‌دهی، از الکتروفورز پروتئین‌های داده‌شده با روش SDS-PAGE انجام گرفته. با داشتن یک جمعیت جمع‌آوری شده مرم گلی دارویی از باغک زن تهیه و بررسی شده. پروتئین‌های بذری‌ها از استفاده از یک فرآیند استخراج و اندازه‌گیری. روش الکتروفورزی با استفاده از شمارش دوباره و مقایسه آنها انجام گردید. شاخص جمعیت‌های محاسبه و ضروری کردن مربوط می‌باشد. میانگین از استفاده از الکتروفورزی انجام شد. نتایج نشان داد که جمعیت‌های موردنظر مطالعه، اختلاف معنی‌دار (در سطح ۰/۰۵) از نظر میزان مولکول‌ها با یکدیگر دارند. 

کلمات کلیدی: الکتروفورز، ایران، فیلوژنی، مرم گلی

مقدمه
مطالعه‌های پروتئین‌های ذخیره‌ای بذر به دلیل ثابت بودن در نوع و میزان، اطلاعات مهمی در مورد روابط خوشنویسی در گیاهان ارتباطی که این در حالی است

(Amini and Ehsanpoor, 2009) شرایط محیطی و نشان‌های فرار می‌گیرد بنابراین، تحلیل پروتئین‌های ذخیره‌ای بذر می‌تواند ارزیابی برای شناسایی ارتباط و

Copyright © 2016, University of Isfahan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/4.0), which permits others to download this work and share it with others as long as they credit it, but they cannot change it in any way or use it commercially.
گونه‌های گیاهی باشند. 
(2013) مطالعه بر روی گونه‌های ذخیره‌ای بذر در تشخیص و
تویفیک نوع ارگان و جمعیت‌های گیاهی بسیار سودمند
است و اطلاعات مفیدی را در روابط فیلوژنیک
(Jamshidi et al., 2007) به دلیل ثابت گردن نوع و میزان پروتئین‌های
ذخیره‌ای بذر در بذرکاری بالا (2007)
نیست که سایر بافت‌های گیاهی، بررسی آنها می‌تواند
ابزاری برای شناسایی ارگان و گونه‌های گیاهی باشد
(Kakaei and Kahrizzi, 2011) 
ابزاری برای‌تفاوت‌شناسی نمودن زیستی است و
پژوهندگان نقل هزینهٔ این ابزاری بدون SDS-PAGE
می‌روند، زیرا پروتئین‌های ذخیره‌ای بذر به میزان زیادی از
نوسانات محیطی مستقل هستند (2012) 
ابن روش برای پروتئین‌های سرد‌دریافت (2012)
(Masoumi et al., 2012) 
که به‌عنوان گونه‌های اصلی بر روی سلول‌های
Sinha et al., 2009 Emre et al., 2007, 2005
و مطالعه ارگان و زیستی‌ها
(Sinha et al., 2012)
(Farkas et al., 2010) و جمعیت‌ها
(Haque et al., 2015)
(Musibau et al., 2013; Seyedi et al., 2010, 2008)
پژوهش‌های اخیر بیانگر این است که گیاه‌های
دارویی حاوی مقدار متغیر از پروتئین‌هستند که
تأثیر قابل ملاحظه‌ای بر خواص درمانی گیاه می‌گذارد.
یکی از این گیاه‌های دارویی، می‌گلی است که دارای
پیش‌ترین میزان پروتئین و آمیزو است به دانه‌های
است که به طور سنتی مصرف می‌شوند. گیاه می‌گلی
الحاق حدود 19 تا 33 درصد پروتئین است. پروتئین
بذر می‌گلی دارای تعداد بالا از آمینه‌ای ضروری
(Razavizadeh and Rostami, 2013)
(Sepehr Echeverrigaray, 2007)
در پژوهش حاضر، به بررسی میزان پروتئین موجود در
گونه‌های مختلف و مقایسه جمعیت‌ها به لحاظ روابط
درون گونه‌ها در می‌گلی پرداخته شده است.
(Lamiaceae) از تیره نعنایان (Salvia) شامل 900 تا 100 گونه در سرده‌ای قدمت و جدید
است. درجه بومی بندی سلول‌های 29 درصد است.
این سرده همچنین براکدیگی نسبتا وسیعی در فلور
گیاهی کشور دارد، به طوری که تاکنون حدود 55 گونه
سلول در ایران شناسایی و گزارش شده که از میان
این تعداد با بذر 17 گونه آنها به‌وجود هستند.
(Sepehr Javan et al., 2012; Mozaffarian, 1996)
(Salvia officinalis L.) دارویی
که از معروف‌ترین
گونه‌های دارویی این سرده است. خاستگاه این گونه
نواحی مدیرانه است. اما مصرف به واسطه خواص
دارویی، مصرف و تغذیه‌ای آن، در اغلب مناطق دنیا
سرازی دنبای کشت می‌شود (Echeverrigaray and
Agostini, 2006)
بررسی تنویع زنیک در میزان
بررسی حاوی مواد مشتق شده از پروتئین‌هستند که
تأثیر قابل ملاحظه‌ای بر خواص درمانی گیاه می‌گذارد.
یکی از این گیاه‌های دارویی، می‌گلی است که دارای
پیش‌ترین میزان پروتئین و آمیزو است به دانه‌های
است که به طور سنتی مصرف می‌شوند. گیاه می‌گلی
الحاق حدود 19 تا 33 درصد پروتئین است. پروتئین
بذر می‌گلی دارای تعداد بالا از آمینه‌ای ضروری
(Razavizadeh and Rostami, 2013)
(Sepehr Echeverrigaray, 2007)
در پژوهش حاضر، به بررسی میزان پروتئین موجود در
گونه‌های مختلف و مقایسه جمعیت‌ها به لحاظ روابط
درون گونه‌ها در می‌گلی پرداخته شده است.
(Lamiaceae) از تیره نعنایان (Salvia) شامل 900 تا 100 گونه در سرده‌ای قدمت و جدید
است. درجه بومی بندی سلول‌های 29 درصد است.
این سرده همچنین براکدیگی نسبتا وسیعی در فلور
گیاهی کشور دارد، به طوری که تاکنون حدود 55 گونه
سلول در ایران شناسایی و گزارش شده که از میان
این تعداد با بذر 17 گونه آنها به‌وجود هستند.
(Sepehr Javan et al., 2012; Mozaffarian, 1996)
(Salvia officinalis L.) دارویی
که از معروف‌ترین
گونه‌های دارویی این سرده است. خاستگاه این گونه
نواحی مدیرانه است. اما مصرف به واسطه خواص
دارویی، مصرف و تغذیه‌ای آن، در اغلب مناطق دنیا
سرازی دنبای کشت می‌شود (Echeverrigaray and
Agostini, 2006)
بررسی حاوی مواد مشتق شده از پروتئین‌هستند که
تأثیر قابل ملاحظه‌ای بر خواص درمانی گیاه می‌گذارد.
یکی از این گیاه‌های دارویی، می‌گلی است که دارای
پیش‌ترین میزان پروتئین و آمیزو است به دانه‌های
است که به طور سنتی مصرف می‌شوند. گیاه می‌گلی
الحاق حدود 19 تا 33 درصد پروتئین است. پروتئین
بذر می‌گلی دارای تعداد بالا از آمینه‌ای ضروری
(Razavizadeh and Rostami, 2013)
(Sepehr Echeverrigaray, 2007)
در پژوهش حاضر، به بررسی میزان پروتئین موجود در
گونه‌های مختلف و مقایسه جمعیت‌ها به لحاظ روابط
درون گونه‌ها در می‌گلی پرداخته شده است.
(Lamiaceae) از تیره نعنایان (Salvia) شامل 900 تا 100 گونه در سرده‌ای قدمت و جدید
است. درجه بومی بندی سلول‌های 29 درصد است.
این سرده همچنین براکدیگی نسبتا وسیعی در فلور
گیاهی کشور دارد، به طوری که تاکنون حدود 55 گونه
سلول در ایران شناسایی و گزارش شده که از میان
این تعداد با بذر 17 گونه آنها به‌وجود هستند.
(Sepehr Javan et al., 2012; Mozaffarian, 1996)
(Salvia officinalis L.) دارویی
که از معروف‌ترین
گونه‌های دارویی این سرده است. خاستگاه این گونه
نواحی مدیرانه است. اما مصرف به واسطه خواص
دارویی، مصرف و تغذیه‌ای آن، در اغلب مناطق دنیا
سرازی دنبای کشت می‌شود (Echeverrigaray and
Agostini, 2006)
مقایسه جمعیت‌های مختلف گونه سری میلی دارویی، تنو درون گونه‌ای و شماهات و دور جمعیت‌های رویه در ایران (ثبت شده در بانک زن گیاهی) با استفاده از زن الکتروفوروز یک بعدی با روش PAGE به عنوان روش ساده، سریع، ارزان و رایج برای مطالعه و مقایسه نماهای پروپتینی جمعیت‌های مختلف گونه سری میلی دارویی و تنو زنیکی این جمعیت‌ها بود، که به عنوان زر زبان در بانک زن گیاهی ایران تهیه داده‌ها می‌شود.

مواد و روش‌ها

مواد گیاهی: بذر سپیده و نازا از بذر جمعیت جمع‌آوری شده میلی دارویی از نقاط مختلف کشور که در بانک زن گیاهی ایران (موزه تحقیقات گیاهی و مراکز کشاورزی) تهیه گردیده و به میزان ۲۰ تا ۵۰ گرم تهیه شد (جدول ۱).

استخراج پروتئین‌ها و انجام الکتروفوروز پروتئین با بذر گیاهی به‌دست آمده در بخش‌های یک قرار داده شد. ۳۰ دقیقه شانه‌ها به آرامی از زن گیاه که با آب مکنجه شسته شده دانسته شرکت‌های الکتروفوروز با تریترس-گلیسین (۱۵ گرم تریترس با ۸/۶ میلی‌مورار، اسیدتیا=۸/۶) و مکان‌بندی استخراج. محتوای پروتئین دانه‌ها با استفاده از دستگاه اسپکتروفوتومتر (مدل Shimadzu) زاین در طول موج ۲۸۰ نانومتر اندازه‌گیری و محاسبه شد.

عبارت دخالت‌های حاوی پروتئین، به مدت ۵ دقیقه در بافر کلریدسیک آسید تریترس (۲۰ میلی‌مورار با اسیدتیا=۸/۶) و مکان‌بندی استخراج. سپس ۲۰ میلی‌لیتر محلول رنگ آمیزی (۱۵ گرم کوماسی بلو ۲۵۰-R پامه) به رنگ‌آمیزی خارج شرکت کرده و بارانی در ۱۲۵ میلی‌لیتر کم‌میکروولتر (حاوی ۵۰ پامه) پر کرده و ترمیم شده به میزان ۱۸۰ ولت به مدت ۳ ساعت الکتروفوروز شد.

برای رنگ آمیزی با کوماسی بلو ابتدا زن از دستگاه الکتروفوروز خارج شرکت کرده و بارانی در ۱۲۵ میلی‌لیتر محلول رنگ آمیزی (۱۵ گرم کوماسی بلو ۲۵۰-R-Pamhe) به رنگ‌آمیزی خارج شرکت کرده و بارانی در ۱۲۵ میلی‌لیتر استیلکس-اسید، ۲۵۰ میلی‌لیتر مایلی‌میکروولتر و اب دوبار
نتایج

ریکت تا حجم نیم لیتر را یک آینه شد. رنگ رنگ
به مدت یک ساعت ۵۰ دور در دمای حرکت داده
شد. پس از آن زن رنگ آمیزی شده به مدت چند ثانیه
با آب مقدر معمولی شسته شد. برای مثال، بهبود
پروتئینی از محلول رنگ‌بر (شامل میلی لیتر منال،
۱۰ میلی لیتر استبک اسید و آب دوبار تفییر تا حجم
۱۰۰ میلی لیتر) استفاده شد. پس از شفاف شدن زمینه
و ظهور پاندره پروتئینی رنگ‌بری موفق شد و زل به
آب مقدار منطقی، ضعیع عکس برداری شد.

روابط فیلوزنش: با عکس برداری از زل
الکتروفورز به دست آمده، شمارش نوارها و مقایسه
آنها انجام شد. هر نوار معروف یک نوع پروتئین در آن
جمعیت انجام شد. با توجه به این که جمعیت یک یک گونه
بررسی می‌شود، اختلافات سیار جنبی است، بنابایین
سنجش نوارهای باز بکی نیز با دقت و با روش
پیتگانشنایی، شمارش مقدار در مجموع، ۳۹ نوار
شمارش شد. داده‌های به دست آمده با استفاده از

جدول ۱-مشخصات بندی جمعیت‌های مورد مطالعه میگلی در ایران

<table>
<thead>
<tr>
<th>شماره نوبت پانکتر</th>
<th>شماره جمعیت</th>
<th>نام جمعیت</th>
<th>نام جمعیت</th>
<th>تعداد اسفن</th>
<th>تعداد اسفن</th>
<th>تعداد اسفن</th>
<th>تعداد اسفن</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸۳۰۶</td>
<td>نجف آباد اصفهان</td>
<td>اصفهان</td>
<td>جمعیت نجف آباد</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۲۳۸۹۱</td>
<td>اصفهان</td>
<td>اصفهان</td>
<td>جمعیت اصفهان</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>۲۳۸۷</td>
<td>تهران</td>
<td>تهران</td>
<td>جمعیت تهران</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
</tr>
<tr>
<td>۱۱۲۵</td>
<td>خلخال</td>
<td>خلخال</td>
<td>جمعیت خلخال</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>۹۱۹</td>
<td>کرج</td>
<td>جمعیت کرج</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td></td>
</tr>
</tbody>
</table>

جایه‌ها و جمعیت‌ها مشابه پاک‌داشت و می‌تواند

مقایسه سیستم‌های پروتئینک دو

جمعیت شماره ۱ (نیژ آباد) با سیستم جمعیت‌ها نشان
داد که سیستم‌های میگلی جمعیت‌ها با جمعیت شماره ۱
(نیژ آباد) برپایه. یعنی اختلاف معنی‌داری بین

از اصفهان، با جمعیت‌های شماره ۳ (تهران) و ۴ (خلخال) و ۵(کرج) نشان داد که سیستم‌های جمعیت‌های شماره ۲ (تهران) و ۴ (خلخال) با جمعیت شماره ۲ (اصفهان)
بررسی توزیع جمیعت‌های میزان گلی درونی (Salvia officinalis) با استفاده از الکتروفورز پروتئین‌های دخیله‌ای پذیر

برای است، اما بین جمیعت شماره ۲ (اصفهان) و ۵ (کرج) اختلاف معنی‌داری وجود دارد.

مقایسه میزان پروتئین‌های جمیعت شماره ۳ (تهران) و جمیعت‌های شماره ۴ (خلخال) و ۵ (کرج) نشان داد که میزان جمیعت‌های شماره ۴ (خلخال) و ۵ (کرج) با جمیعت شماره ۳ (تهران) برابر است و بین این جمیعت‌ها اختلاف معنی‌داری وجود ندارد.

نتایج نشان داد که میزان پروتئین در جمیعت شماره ۴ (خلخال) با جمیعت شماره ۵ (کرج) برابر است و بین این جمیعت‌ها اختلاف معنی‌داری وجود ندارد.

در مجموعه نتایج حاصل از مقایسه میزان‌های با استفاده از آزمون نوکی به لحاظ میزان پروتئین در بذرهای جمیعت‌های مورد مطالعه نشان داد که برخی از آنها از نظر میزان پروتئین‌ها یکدیگر برابر نیستند، به نحوی که تنها دو جمیعت اصفهان و کرج از نظر میزان پروتئین اختلاف معنی‌داری با یکدیگر دارد و اختلاف میزان پروتئین‌های جمیعت‌های دیگر معنی‌دار نیست، در نتیجه این جمیعت‌ها از نظر میزان پروتئین‌ها یکدیگر یکسان هستند (جدول‌های ۴ و ۵).

جدول ۳- میزان‌ها و انحراف معیار و درصد تنشا جمیعت‌های مورد مطالعه با استفاده از میزان پروتئین‌های دخیله‌ای

این یک تعداد پنج نوار به شماره‌های ۲۵ تا ۲۸ در (major) مجاورت یکدیگر قرار داده، نوار ضخیم‌تر را به نمایش گذارده و نوار رایگان ۲۴ در به هم جمیعت‌ها مشترک است و با توجه به

الکوی پروتئینی: بررسی نوارهای ایجاد شده نشان داد که پنج گروه نوار در رده‌های ۲۶، ۲۴، ۲۵، ۲۴ و ۲۶ در همه جمیعت‌ها مشترک است و با توجه به

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>0.3061</td>
<td>0.4657</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>0.5714</td>
<td>0.5000</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>0.5306</td>
<td>0.5042</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>0.3265</td>
<td>0.4738</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>0.2857</td>
<td>0.4564</td>
</tr>
</tbody>
</table>

Pooled StDev = 0.4804
پروتئین اختصاصی جمعیت شماره 1 (جمعیت نجف آباد) و نوار رنگ‌های 13 اختصاصی جمعیت شماره 4 است. نوارهای 14، 16، 18 و 19 پروتئین‌های اختصاصی جمعیت شماره 3 و نوارهای 31، 32، 34، 35، 36، 38، 39، 41 اختصاصی جمعیت شماره 2 هستند. کلیه نوارهای 21، 23 و 29 در تمام جمعیت‌ها به غیر از جمعیت شماره 1 (جمعیت نجف آباد) مشترک هستند و این جمعیت، پروتئین‌های مذكور را ندارد.

جدول 4- ماتریس درصد یابیتِ پروتئین‌های جمعیت‌های مورد مطالعه مربوط به مدل گلد دارویی

<table>
<thead>
<tr>
<th>شماره جمعیت</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

طرح 2- دندروگرام حاصل از یابیتِ جمعیت‌های مورد بررسی مربوط به مدل گلد دارویی

بحث و نتیجه‌گیری

پروتئین‌های ذخیره‌ای بذر تحت تأثیر شرایط محیطی قرار نمی‌گیرند و بسیار پایدار هستند. بنابراین، الگوهای نوارنده الکتروفورزی کل پروتئین‌های بذر و اجزای پروتئین‌های ذخیره‌ای بذر (آلیومین‌ها، گلوبولین‌ها، پروپلیم‌ها و گلوتئین‌ها) جانچه‌باز زل الکتروفورز سدیم دو دسیل سولفات پلی اکریلومید.
تحلیل خوشه‌بندی نیز داده‌های را فراهم می‌کند که بررسی روایت فنی-ژنتیکی بین گونه‌ها و جمعیت‌ها را امکان‌پذیر می‌سازد.

با نگاه کلی به دست آمده، جهان نطفه کلی برای تجمع نواره‌ها که هر دوی آنها با تراکم زیاد و یکی با تراکم نسبتاً کمتر دیده می‌شود. از میان نوارهای پهن، دو دسته در گروه پروتئین‌های سنگین وزن و یکی در دسته میان وزن و یکی (به عنوان یک گروه گرفتن در میانه مسیر حرکت) قرار دارند. این گروه‌بندی و آراپش نوارها به دلیل شیب‌های زیاد تاکسون‌ها، پیش‌تر در تاکسون‌های فروگونه‌ای و ارقام مشاهده می‌شود، نتیجه‌ای که Farkas, S. officinalis و همکاران (2008) این نتیجه در بررسی خود راوي ارقام مختلف باهامی‌ای، به الگوی پروتئینی با پنج نوار بهین دست یافته‌اند. همچنین، با توجه به وجود مولکول‌هایی با وزن‌های مختلف، دست‌به‌دست گروه‌های پروتئینی بر اساس مطالعهٔ Miskoska-Milevska و همکاران (2008) و GZsah-Ha رژه‌های آنها روز گرونگ‌هایی ارقام گوجه‌فرنگی است.

meticيني به دست آمده از كار همکاران (2015)، طیف گسترده‌ای از پِترونتیا پروتئینی (آی وزن‌های مختلف از سبک وزن تا سنگین وزن) را تصویر کرد که توان به پردازی متمایز کردن گروه‌های پروتئین‌های نوارهای داد و چنین استنتاج کرد که این امر می‌تواند تحقیق جدیدی را برای خلق گوناگونی در میان زرده‌پاسه‌های موجود فراهم کند.

با توجه به نتایج به دست آمده و به استناد آنها شیب‌ها انتخاب کرده (کمتر از 5 درصد) در سطحی جمعیت‌های مخصوص، چنین که نوع S. officinalis
معلوما تفاوت معنی داری بین میزان پروتئین در آنها وجود نداشت. بررسی محتوای پروتئین محلول در بذر کاز آنان داد که در ارقام ممکن تفاوت معنی داری (Razavizadeh and Rostami, 2012) با یکدیگر نداشتند. در تأثیر به دست آمده از محتوای پروتئین بالا و Ehsanpour (2012) به دست آمده حاکی از عدم اختلاف بین میزان پروتئین در ارقام مختلف بک گونه است. این در حالت است که در تحقیق حاضر، میزان پروتئین در جمعیت های مختلف یک گونه تفاوت معنی داری داشت (جدول ۲). در نگاه اول نبط این استنباط می شود که بذر ها جمع آوری شده از مکان های نزدیک به همدیگر شاهت بیشتری داشته باشند. امکان پذیری و حاصل ناشان داد که توزیع، تغذیه، فراکسیون و این گونه جمعیت ها کمترین تأثیر را داشت و به نظر می رسد که هر کدام از جمعیت ها از خاصیت متفاوتی منشا گرفته است. شکل ۲ نشان داد که جمعیت های نهار و اصفهان بیشترین شاهت و پس از آن جمعیت های کرج و خلخال شاهت بیشتری با هم دارند و جمعیت نجف آباد که کمترین فاصله جغرافیایی را با اصفهان دارد کمترین شاهت بین جمعیت ها را داشت. به طوری که در مجموع نشان داد که جمعیت بررسی شده به دو گروه کلی شامل یک جمعیت نجف آباد و گروه دیگر چهار جمعیت بالقوی تیمی شد. چهار جمعیت نیز خود به دو زیر گروه شامل جمعیت های نهار و اصفهان در یک زیر گروه و جمعیت های کرج و خلخال در دو گروه Echeverrigaray و Agostini (2006) نشان دادند که جمعیت های K. officinalis اساس روش RAPD بیا اندازه مولکولی ۱۰۰ تا ۲۵۰ نا Javed et al., 2004) در بررسی زنوبیه های برخی از زنوبیه‌های دیگر از دست داده شد (جدول ۴). در هر حال، بررسی الکتروفورزی پروتئین‌های ذخیره‌های بذر ارتباط مستقیمی بین زنوبیه پروتئین‌هایی دارد که می‌تواند به عنوان نشانگر بالقوه برای مطالعه تنویع زنوبیه و شاخص گوناگونی مورد استفاده قرار گیرند (Iqbal et al., 2005). در حاضر، در یکی از میزان پروتئین در بذر گیاهان مختلف بررسی شده است. بررسی میزان پروتئین در برخی گونه‌های مختلف یک سرده، نشان داد که فاوت معنی دار در میزان پروتئین آنها است. برای نمونه Emre, و همکاران (2007) با مطالعه پروتئین‌های ذخیره‌های بذر گونه‌های مختلف سرده خلو (Lathyrus) از نواحی مختلف جغرافیایی، نشان دادند که تفاوت معنی‌داری در مقدار پروتئین گونه‌ها وجود دارد. امکان مطالعات صورت گرفته روي ارقام مختلف یک گونه نشان داده كه K. officinalis
سری توسعه زننگی جمعیت‌های مرم‌گلی دارویی (Salvia officinalis) با استفاده از الکتروفورز پروپتین‌های دخیره‌ی بذر

مرم‌گلی موجود در بخش پرزیل که تصور می‌شود همگی توسط مهاجران اروپایی از آن بکر وارد شده باشند، از خاستگاه‌های مختلفی پدیده‌اند. بر اساس نظر Cahill (2004) سه غالب در تنواع زننگی مرم‌گلی عبارت است از: گونه‌، دایم جغرافیایی و انتخاب انسان. وی در بررسی توسعه زننگی ۲۸ جمعیت خودرو و اهلی شده گونه Salvia hispanica با استفاده از روش RAPD نشان داد که تنواع زننگی در بین جمعیت‌های خودرو‌ی بیشتر در این جمعیت‌ها است. یکی از دلایل این امر می‌تواند حاکم بودن شرایط محیطی ویژه سواری سنتز پروتئین‌های مربوط به مکانیسم‌های نشان‌دهنده بالا بودن همبستگی این نکات است. روشن بودن زننگ‌های خودرویی بشدت در این جمعیت‌ها باعث می‌شود که این همبستگی از دست رفته تنواع، اهلی شدن و اختلال فقدان تنواع در واریته‌های تجاری جدید، و وجود دارد. وی بر اساس نتایج خود، مرکز تنواع زننگی نطنز مورد نظر را بیشتری کرد. در مطالعه حاضر، با توجه به عدم آگاهی از مجموع جمعیت‌های موجود در بخش مرم‌گلی در کشور، به بررسی جمعیت‌های موجود در بانک زنی‌های خودرویی به‌کار گرفته شد. بنابراین، بررسی سیر کلی در سراسر کشور، بازبینی طبقات جامع‌تر و اطمن‌تر کامل از جمع‌آوری و مقایسه کل جمعیت‌های مرم‌گلی برای اظهار نظر است. دومین که، شایسته جمعیت‌های حاضر بدون وجود رابطه‌ای بین مسافت جغرافیایی است و به نظر می‌رسد از خاستگاه‌های مختلفی منشأ گرفته باشند. در همین رابطه، Sepehry Javan و همکاران (2009) کتاب گروه‌بندی گروه‌های مرم‌گلی در سراسر جهان، که به تاریخ‌سازی و بزرگ‌سازی گروه‌های مرم‌گلی در کشور اشاره دارد.
Brazilian accessions of *Salvia officinalis* L. based on RAPD markers. Review in Brasilian Plant Medicine Botucatu 8(esp.): 13-17.


Assessment of genetic diversity among some accessions of sage (*Salvia officinalis* L.) using electrophoresis of seed storage proteins

Seyed Abbas Mirjalili *
Agricultural Jahad Institute of Technical and Vocartional Higher Education, AREEO, Tehran, Iran

Abstract

The genus *Salvia* (Lamiaceae) comprises over 900 species in the world, with a relatively wide dispersion in the Iran’s flora. Until now, about 58 species of the genus have been reported and identified in Iran, in which 17 of them were endemic. In order to study, investigate and evaluate the intraspecific diversity, similarity and dissimilarity among Iranian *Salvia officinalis* accessions, an experiment was carried out using SDS-PAGE technique. In this study, the seeds from five accessions were collected from gene bank and were evaluated. The seed storage proteins were extracted by buffers and were measured. Phylogenetic relationships were analyzed according to presence and absence of bands on the gel. A dendrogram was prepared using calculation of the accession’s similarity index. Mean comparison were done by Tukey’s test. The seed protein contents showed significant differences (P≤0.01) among accessions. A total of 39 bands were indicated on the gel. The maximum diversity was detected in the accession No. 2 while, the lowest band’s number were recorded with the accessions No. 1 and 5. Based on dendrogram, the accessions were divided into two groups; one includes accession No. 1 and 4 other accessions were located in the second group further classified into two subgroup including accessions No. 2 and 3 in one clade and accessions No. 4 and 5 in the other ones.

Key words: Electrophoresis, Iran, Phylogeny, *Salvia officinalis*